ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ПРЕДВАРИТЕЛЬНЫЙ НАЦИОНАЛЬНЫЙ СТАНДАРТ

ПНСТ Проект

ГРУНТЫ МЕТОД ИЗМЕРЕНИЯ БОКОВОГО ДАВЛЕНИЯ ПЛОСКИМ ДИЛАТОМЕТРОМ

Настоящий проект стандарта не подлежит применению до его утверждения

> Москва Стандартинформ 2021

Предисловие

1 РАЗРАБОТАН: Общество с ограниченной ответственностью «Научно-производственное предприятие «Геотек» (ООО «НПП «Геотек»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от_____ №

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта и проведения его мониторинга установлены в ГОСТР 1.16—2011 (разделы 5 и 6).

Национальный орган Российской Федерации по стандартизации собирает сведения о практическом применении настоящего стандарта. Данные сведения, а также замечания и предложения по содержанию стандарта можно направить не позднее, чем за девять месяцев до истечения срока его действия, разработчику настоящего стандарта по адресу: 440068 Пенза, ул. Центральная, 1М и в национальный орган Российской Федерации по стандартизации по адресу:__.

В случае отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемых информационном указателе «Национальные стандарты» и журнале «Вестник технического регулирования». Уведомление будет размещено также на официальном сайте национального органа Российской Федерации в сети Интернет (www.gost.ru)

© Стандартинформ, 2021

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Термины и определения	2
4	Общие положения	2
5	Сущность метода	3
6	Оборудование и приборы	6
7	Подготовка к выполнению испытаний	8
8	Проведение испытаний	9
9	Обработка результатов	10
При.	ложение А (рекомендуемое). Журнал измерений	12
При.	ложение Б (обязательное). Градуировочное устройство	13
При.	ложение В (рекомендуемое). Журнал градуировки датчика давления	14
При.	ложение Г (обязательное). Пример градуировочного графика	15
При.	ложение Д (обязательное). Паспорт испытаний	16
При.	ложение Е (обязательное). Коэффициент релаксации напряжения	17

ПРЕДВАРИТЕЛЬНЫЙ НАЦИОНАЛЬНЫЙ СТАНДАРТ

ГРУНТЫ МЕТОД ИЗМЕРЕНИЯ БОКОВОГО ДАВЛЕНИЯ ПЛОСКИМ ДИЛАТОМЕТРОМ

Soils. Standard test method for measurement flat dilatometer

Дата введения -

Дата окончания -

1 Область применения

- 1.1 Настоящий стандарт распространяется на дисперсные грунты и устанавливает метод измерений бокового давления в природном грунтовом массиве при проведении инженерно-геологических и геотехнических исследований.
- 1.2 Стандарт не распространяется на измерения давлений в крупнообломочных и вечномерзлых грунтах; песчаных и глинистых грунтах с крупнообломочным заполнением более 20% объема.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 25100-2011 Грунты. Классификация

ГОСТ 30672-2012 Грунты. Полевые испытания. Общие положения Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 25100 и ГОСТ 30672, а также следующие термины с соответствующими определениями:

Боковое давление: Горизонтальное напряжение от собственного веса грунта на заданной глубине от поверхности грунта.

Грунтовый массив: Природная, неоднородная среда с дискретными физическими и механическими свойствами в трехмерном пространстве.

Зонд: Устройство, погружаемое в грунт и состоящее из штанги и наконечника в виде плоской пластины с датчиком давления.

Датчик давления: Тензометрический датчик давления с гидравлическим преобразователем.

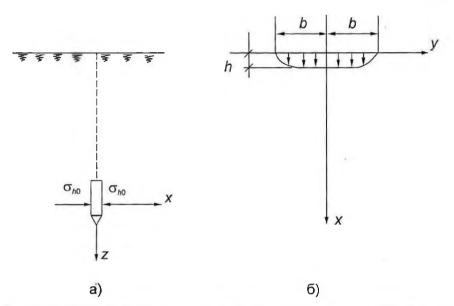
Точка измерения: Место, в котором планируется или проведено измерение бокового давления в грунте с известными географическими координатами.

Силовое устройство: Устройство для вдавливания и извлечения зонда механического или гидравлического действия.

4 Общие положения

- 4.1 Общие требования к полевым испытаниям грунтов, оборудованию и приборам, подготовке площадок для испытаний приведены в ГОСТ 30672.
- 4.2 Метод измерения бокового давления плоским дилатометром соответствует ГОСТ 19912, развивая и дополняя его в части получения информации о начальном напряженном состоянии массива грунта, характеризуемое горизонтальными и вертикальными напряжениями от собственного веса грунта.
- 4.3 Измерения бокового давления в грунтовом массиве должны проводиться по программе инженерно-геологических или геотехнических исследований, составляемых изыскательской организацией и отвечающей требованиям, настоящего стандарта. Выбор горизонтов проведения измерений назначается по инженерно-геологическому разрезу. Точки исследования массива при проведении измерений должны быть обеспечены планово-высотной привязкой геодезическими методами.
- 4.4 В процессе измерений бокового давления плоским дилатометром ведут журнал, форма которого приведена в Приложении А, а при автоматизации процесса испытаний и обработки данных с помощью компьютерных программ результаты испытаний хранятся в базе данных испытаний в одном из электронных форматов.

- 4.5 Выполнение измерений бокового давления плоским дилатометром допускается проводить в условиях, установленных паспортными данными используемой измерительной аппаратуры, требования к которой приведены в п.п. 6.1.1, 6.3, 6.4.
- 4.6 При разнице температур окружающей среды и грунта более 5°С в результаты измерения нулевой отметки шкалы измерения должны вводиться температурные поправки, в соответствии с параметрами измерительной аппаратуры.
- 4.7 При проведении измерений необходимо определить номинальные значения влияющих величин: температура среды на поверхности грунта и на исследуемом горизонте, относительная влажность воздуха и атмосферное давление, напряжение питания измерительной аппаратуры.


5 Сущность метода

5.1 Измерения бокового давления в природном грунтовом массиве осуществляется датчиком давления, входящий в состав конструкции плоского зонда (рис. 1) в момент вдавливания последнего в грунтовый массив.

Рисунок 1. Конструкция зонда: 1 — наконечник; 2. — датчик давления грунта; 3 — рабочая часть зонда; 4 — крышка канала вывода кабеля; 5 — конус; 6 — переходник с резьбой под штангу; 7 — кабель; 8 — разъем

5.2 Измерения бокового давления в природном грунтовом массиве (рис. 2a) выполняются прямым методом, основанном на много-кратном измерении бокового давления на одной и той же глубине от поверхности и в одном и том же инженерно-геологическом элементе.

Рисунок 2. Напряженное состояние вблизи задавливаемого зонда: а — измеряемое боковое давление; б — схема к решению упругой задачи раскрытия трещины

- 5.3 При измерениях давлений в грунтовом массиве определяют:
 - коэффициент бокового давления в состоянии покоя;
 - мгновенный модуль общей деформации;
 - длительный модуль общей деформации;
 - коэффициент релаксации напряжений.
- 5.4 Процесс вдавливания зонда в грунт осуществляется путем раздвижки грунта и вытеснения его в стороны от боковой поверхности. В результате этого на боковой поверхности зонда возникают контактные давления, как реакция природного грунта на вдавливание, которые интегрально отражают природное боковое давление, действующее в данной точке массива (σ_{h0}) , так и дополнительное давление $(\Delta\sigma_h)$, вызванное внешним воздействием за счет вдавливания зонда. Таким образом, измеряемое на контакте зонда с грунтом давление (σ_h) можно представить в виде:

$$\sigma_h = \sigma_{h0} + \Delta \sigma_h. \tag{1}$$

При вдавливании зонда в грунтовый массив грунту задается толщиной пластинки постоянное перемещение (деформация) и измеря-

ется реакция, что соответствуют испытанию грунта в режиме релаксации напряжений. При таком режиме испытания грунтов в начальный момент времени $(t_{\rm H})$ вдавливания зонда реакция грунта максимальная, а после остановки и выдержки во времени происходит релаксация напряжений. Скорость релаксации напряжений определяется реологическими свойствами грунта. При этом релаксируют только дополнительное давление $(\Delta \sigma_n)$, вызванное внешним воздействием раздвижкой грунта, а природные горизонтальные напряжения (σ_{n0}) остаются в данной точке неизменными (рис. 3).

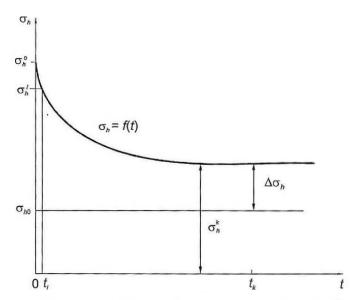


Рисунок 3. Схема релаксации напряжений

Релаксация напряжений на заданной глубине производится до стабилизированных значений измеряемого давления (σ_h) , при этом в зависимости от физических свойств грунта (плотность, структурная прочность и др.) дополнительные давления релаксируют до конечных значений и, чем выше плотность и структурная прочность, тем больше значения остаточного дополнительного давления, а в слабых грунтах $\Delta \sigma_h$ релаксируют до нулевых значений, тогда:

$$\sigma_h = \sigma_{h0} \tag{2}$$

5.5 Вдавливание зонда рассматривается, как процесс образования и расширения трещины в упругой среде за счет приложенного изнутри давления. Решение подобной задачи получено В. Новацким [1] в условиях упругой плоской задачи раскрытия трещины шириной 2b в виде уравнения:

$$\overline{\sigma}_0 = \frac{Eu_x}{2(1-\mu^2)\sqrt{b^2-y^2}} = \frac{2Eh}{(1-\mu^2)B},$$
(3)

где σ_0 – давление на границе трещины; u_x – перемещение границы трещины; μ – коэффициент Пуассона; b – полуширина трещины; B=2b – ширина пластины зонда; h – толщина пластины зонда; E – модуль деформации.

Из уравнения (3) зависимость для модуля деформации имеет вид:

$$E = \frac{\left(1 - \mu^2\right)\sigma_h B}{h} \tag{4}$$

где σ_h – измеряемое боковое давление.

5.6 Определение напряжений в грунте в процессе релаксации выполняют с использованием реологической модели Максвелла-Шведова:

$$\sigma_h^t = \sigma_h^k + (\sigma_h^0 - \sigma_h^k) \exp(-t_i / n)$$
 (5)

где σ_h^k — стабилизированное значение измеренного давления; σ_h^i — начальное измеренное давление, соответствующее времени t_i =1 мин.; t_i — значение времени в процессе релаксации; n — коэффициент релаксации (Приложение E).

Примечание 1 — Для аппроксимации данных релаксации напряжений могут быть использованы и другие функции [2].

6 Оборудование и приборы

- 6.1 В состав установки для измерений бокового давления и подготовке к ним должны входить:
 - зонд;
 - устройство для вдавливания и извлечения зонда;
 - опорно-анкерное устройство (при необходимости);
 - измерительная система;
 - устройства калибровки датчиков.
- 6.1.1 Измерительная система должна иметь не менее четырех измерительных каналов для измерения показаний датчика давления, датчика силы, датчика перемещений и датчика угла наклона.

Примечание 2 – Допускается использование дополнительных каналов, например, для измерения температуры грунта, скорости поперечных волн, порового давления и др.

6.2 Опорно-анкерное устройство должно воспринимать реактивные усилия, возникающие при вдавливании и извлечении зонда.

- 6.3 Основная погрешность измерительных каналов должна быть не более:
 - ±2 % при измерении прикладываемой осевой нагрузки;
 - ± 1,5% при измерении бокового давления;
 - не более 2^0 при измерении отклонения зонда от вертикали;
 - ± 1 см при измерении глубины погружения.
- 6.4 Градуировка датчиков и калибровка каналов измерительной системы должны выполняться не реже чем через три месяца, а также после испытаний, в которых нагрузка на датчики была близка или превышала максимально допустимое значение (по паспорту фирмы изготовителя) или было зарегистрировано значительное смещение нуля.
- 6.4.1 Для градуировки датчиков следует применять в лабораторных и полевых условиях устройство для гидростатической градуировки, в соответствии с Приложением В.
- 6.4.2 Проверку смещения нуля следует проводить перед и после каждого испытания. Ее результаты следует учитывать при обработке результатов измерений и балансировке измерительной системы.
- 6.4.3 Контрольная градуировка и контроль работоспособности зонда в полевых условиях выполняется с помощью устройства для градуировки.
- 6.4.4 Результаты градуировок заносятся в журнал, форма которого представлена в рекомендуемом Приложении Г.
- 6.5 Выбор датчика давления следует производить по номинально-допустимому давлению ($P_{H,D}$). Рабочий диапазон измерений для обеспечения заданной точности измерений должен приниматься в интервале $(0,2-1,0)P_{H,D}$.
- 6.6 Величину $P_{\text{H.д}}$ датчика давления следует выбирать в зависимости от физического состояния грунтов, глубины зондирования, уровня грунтовых вод:
- для рыхлых песков, слабых водонасыщенных глинистых грунтов, торфов и лессовых грунтов при зондировании до 10 метров ($P_{H.Д.} = 0.5 \text{ M}\Pi a$);
- для глинистых грунтов полутвердой и твердой консистенции и плотных песков при глубине зондирования до 10 метров и при глубине зондирования более 10 метров для других видов грунтов (Р_{н.д.}=1,0 МПа);
- для плотных песков и глинистых грунтов полутвердой и твердой консистенции при глубине зондирования более 10 метров ($P_{\rm H, L}$ > 1,0 MПa).

- 6.7 Рабочая часть зонда должна быть выполнена в виде тонкой заостренной пластины с тем, чтобы при ее погружении в грунт минимизировать разрыв сплошности грунта и обеспечить полный контакт ее поверхности с грунтом.
- 6.8 Края рабочей поверхности пластины должны быть закруглены для уменьшения концентрации напряжений. Конструкция пластины должна иметь соотношения геометрических размеров толщины h к ширине B не более h/B ≤ 0,2. Угол заострения зонда должен быть не более 20°.
- 6.9 Конструкция переходных элементов от зонда к силовому устройству не должна создавать дополнительные погрешности при измерениях.
 - 6.10 Конструкция зонда должна отвечать следующим условиям:
- 6.10.1 Модуль упругости датчика давления должен быть не менее чем в десять раз выше модуля упругости исследуемого грунта.
- 6.10.2 Измерение бокового давления должно осуществляться непосредственно на контактной поверхности рабочей части зонда.
- 6.11 Для вдавливания и извлечении зонда следует применять силовые устройства буровых машин, используемых в инженерногеологических исследованиях.
- 6.12 Отклонение вертикальной оси зонда при его вдавливании не должно превышать ±2°.
- 6.13 Конструкция силового устройства должна обеспечивать возможность прохождения кабеля внутри колонны штанг, используемых для вдавливания.

7 Подготовка к выполнению испытаний

- 7.1 При подготовке к испытаниям должны быть выполнены следующие работы:
 - визуальный осмотр зонда и измерительной системы;
 - монтаж рабочей части зонда на штанге;
 - пропускание электрического кабеля через набор штанг;
 - монтаж колонны штанг на силовом устройстве буровой машины;
 - подключение и опробование измерительной системы.
- 7.2 Перед началом испытаний зонд осматривают, устанавливая отсутствие механических и прочих повреждений зонда и кабеля, вызванных транспортировкой.
- 7.3 Производят подготовку силового устройства для вдавливания зонда в грунтовый массив в соответствии с инструкцией по ее эксплуатации и выполняют при необходимости его анкеровку.
- 7.4 Мачту силового устройства устанавливают в месте испытаний. Отклонение мачты установки от вертикали не должно превышать ±2°.

- 7.5 В случае проведения измерений бокового давления из забоя скважины, выполняют лидирующую скважину диаметром равным ширине зонда, забой которой не достигает отметки измерений на расстояние не менее 4-х диаметров скважины.
 - 7.6 Выполняют монтаж зонда на 1-ом звене колонны штанг.
- 7.7 Кабель пропускают через комплект соединительных задавливающих штанг. Длина кабеля и суммарная длина соединительных штанг должны обеспечивать возможность вдавливания зонда на наинизшем проектном горизонте измерений бокового давления.
 - 7.8 Подключают кабель к измерительной системе.
- 7.9 Проводят опробование измерительных каналов с целью установления их работоспособности, осуществляя контрольную градуировку датчика давления следующим образом:
- 7.9.1 Рабочая часть зонда вставляется в устройство градуировки (Приложение В) и выполняют трехкратную нагрузкуразгрузку датчика давления.
- 7.9.2 Результаты контрольной градуировки заносят в журнал измерений и сверяют с результатами лабораторной градуировки датчика давления (Приложение В). При различии в показаниях не более 5% зонд считается пригодным к выполнению измерений. В противном случае необходимо выполнить повторную градуировку.

8 Проведение испытаний

- 8.1 Зонд, соединенный с силовым устройством штангами, располагают у поверхности массива грунта и записывают начальные показания измерительных каналов.
- 8.2 При выполнении измерений из забоя скважины зонд опускают до за- боя и выдерживают в таком положении в течение 30 минут и записывают начальные показания датчика давления.
- 8.3 Снятие показаний проводят не менее трех раз за период выдерживания. Результат измерения фиксируют в качестве нулевых показаний датчика давления.
- 8.4 В случае нахождения в массиве грунтовых вод, устанавливают превышение отметки поверхности грунтовых вод над глубиной испытаний и проводят корректировку нулевых показаний датчика давления, обусловленную гидростатическим обжатием.
- 8.5 При вдавливании зонда из скважины расстояние от забоя до точки измерения не должно быть менее четырех диаметров скважины.
- 8.6 Вдавливание зонда производят равномерно с максимально возможной скоростью, которую обеспечивает силовое устройство.
- 8.7 В процессе вдавливания проводится снятие показаний датчика осевой нагрузки и датчика перемещений через каждые 1-2 с.

- 8.8 При достижении заданной глубины вдавливание прекращают и нагрузку на вдавливающие штанги полностью снимают.
- 8.9 В момент прекращения вдавливания и снятия нагрузки фиксируют показание измерительной системы, и этот момент принимается за начало отсчета времени данного измерения (t_O).
- 8.10 Дальнейшую регистрацию показаний датчика давления проводят через 1; 2; 5; 10; 20; 30; 60 минут после начала данного измерения до условной стабилизации бокового давления (релаксации напряжений), принимаемая в 1 кПа за один час.
- 8.11 Зонд извлекают из грунтового массива на поверхность и проводят регистрацию конечных "нулевых" показаний измерительной системы.
- 8.12 Результаты измерений фиксируют в журнале измерений (Приложение А) и хранят в базе данных компьютера в одном из электронных форматах данных.

9 Обработка результатов

- 9.1 По результатам испытаний проводят обработку измерений следующим образом:
- 9.1.1 Определяют приращение измеренного давления $\Delta \sigma_h$ над начальным "нулевым-мгновенным" значением в фиксированные моменты времени, указанные в п. 8.10.
- 9.1.2 Строят график зависимости $\sigma_h = f(t)$ (рис. 3) при времени от начала опыта, до момента условной стабилизации измеренного давления для данного испытания. При этом за начало отсчета времени принимается значение времени равное 1 мин.
 - 9.1.3 Используя формулу (4), определяют модули деформации:
 - мгновенный модуль деформации при $\sigma_h = \sigma_h^i$;
 - длительный модуль деформации при $\sigma_k = \sigma_h^k$.
 - 9.1.4 Коэффициент бокового давления находят из выражения:

$$K_0 = \frac{\sigma_{h0}}{\sigma_{n0}},\tag{6}$$

где $\sigma_{\nu 0}$ — вертикальные напряжения от собственного веса грунта. Ниже грунтовых вод напряжения определяются с учетом взвешивающего действия воды.

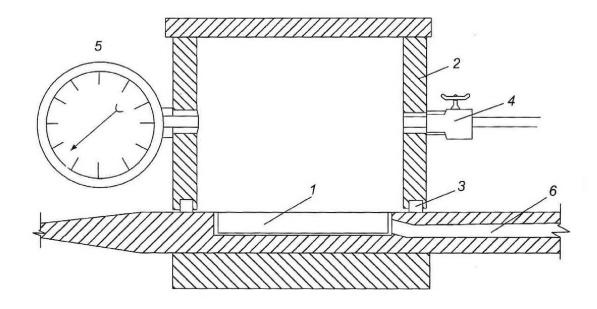
9.1.5 Напряжения соответствующие заданному периоду времени релаксации находятся с использованием уравнения (5).

9.2 Статистическую обработку результатов измерений проводят в соответствии с ГОСТ 20522. Для статистической обработки принимают результаты измерений по различным испытаниям, но соответствующие одному и тому же времени от момента остановки зонда в точке измерения и начала испытания.

Библиография

- [1] Новацкий В. Теория упругости. М.: Мир, 1975.
- [2] Вялов С.С. Реологические основы механики грунтов. М.: Высшая школа, 1978.

Дата


Приложение **A** (рекомендуемое)

Журнал измерений

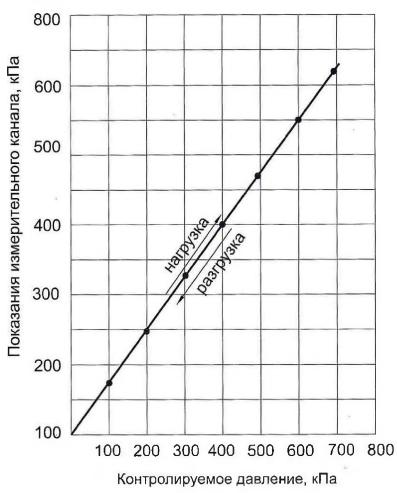
Площадка:		Объект:							
Номер точки из	вмерения:								
Привязка точки измерения: Долгота Широта									
Абсолютная отметка поверхности грунта									
Глубина от пов	Глубина от поверхности гранта, м:								
Номер зонда:									
Дата измерени	й:								
Глубина, м	Время, с	Давление, кПа	Примечания						
			- 14						
Испытани	я провел		Ф.И.О						

Приложение Б (обязательное)

Градуировочное устройство

Схема устройства для гидростатической градуировки датчика давления:

1 — месдоза, установленная в теле зонда; 2 — кондуктор для создания гидростатического давления жидкости; 3 — кольцевой уплотнитель; 4 — кран подачи давления жидкости; 5 — образцовый манометр для контроля давления жидкости в кондукторе; 6 — кабель

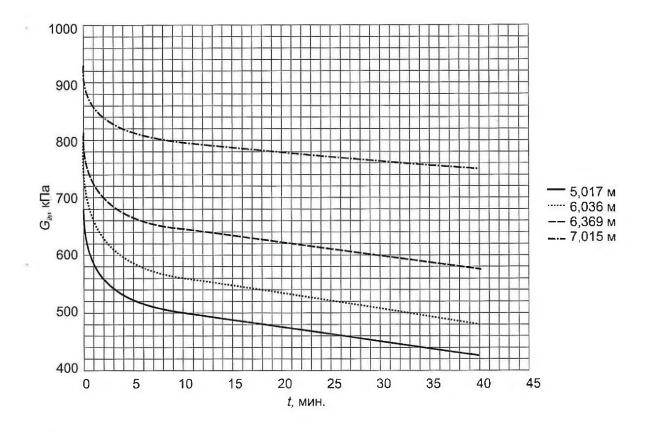

Приложение В (рекомендуемое)

Журнал градуировки датчика давления

Номер зонда:												
Номинально-допустимое давление:						МП	la (к	Па)				
Данные по средствам измерения:												
Манометр обр	азцо	вый	Nº:			·						
Максимальное давление:					МПа (кПа)							
Действительное давление МПа (кПа)	Цикл прямого хода по изме- рителю			Среднее значение	Вариация		Циктобрат- ного хода по измерите- лю		Среднее	Вариация		
	1	2	3		абс. в делен.	отн. в %	1	2	3		абс. в делен.	отн. в %
Испытані Дата	ия пр	оове	л		I						_ Ф.И.О.	

Приложение Г (обязательное)

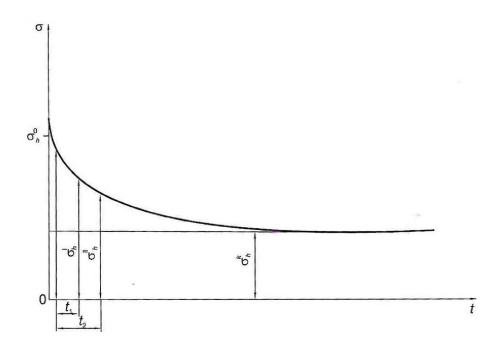
Пример градуировочного графика



	100 200 300 400 500 600 700 800 Контролируемое давление, кПа	
Вонд №:	Измерительный канал №:	
1спытания пров Цата	елФ.И.О.	

Приложение Д (обязательное)

Паспорт испытаний


Площадка:	Объект:	
Номер точки измерения:		
Привязка точки измерения: Долгота	Широта	_
Абсолютная отметка поверхности грунта _		
Глубина от поверхности гранта, м:		

	+ 14 0
Испытания провел	 Ф.И.О.
Лата	

Приложение E (обязательное)

Коэффициент релаксации напряжения

Из выражения (Е.1) можно определить коэффициент релаксации n соответствующий выбранному периоду времени t_2 = $2t_1$:

$$n = \frac{t_1}{\ln \frac{\sigma_h^0 - \sigma_h^{II}}{\sigma_h^0 - \sigma_h^I}},$$
 (E.1)

где σ_h^0 — начальное измеренное давление, соответствующее времени t=1 мин.; σ_h^1 — измеренное давление, соответствующее первому выбранному периоду времени; σ_h^{Π} — измеренное давление, соответствующее второму выбранному периоду времени; t_1 — значение первого выбранного периода времени в процессе релаксации.

УДК 624.131.386

OKC 19.060

Ключевые слова: полевые испытания, боковое давление, плоский дилатометр, коэффициент релаксации, модуль деформации

Руководитель организации-разработчика ООО «НПП «Геотек» Генеральный директор

Руководитель разработки Директор по научной работе и инновациям И.Х.Идрисов

Г.Г.Болдырев